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Animal ecology is shaped by energy costs, yet it is difficult to measure fine-

scale energy expenditure in the wild. Because metabolism is often closely cor-

related with mechanical work, accelerometers have the potential to provide

detailed information on energy expenditure of wild animals over fine temporal

scales. Nonetheless, accelerometry needs to be validated on wild animals,

especially across different locomotory modes. We merged data collected on

20 thick-billed murres (Uria lomvia) from miniature accelerometers with

measurements of daily energy expenditure over 24 h using doubly labelled

water. Across three different locomotory modes (swimming, flying and move-

ment on land), dynamic body acceleration was a good predictor of daily energy

expenditure as measured independently by doubly labelled water (R2¼ 0.73).

The most parsimonious model suggested that different equations were needed

to predict energy expenditure from accelerometry for flying than for surface

swimming or activity on land (R2 ¼ 0.81). Our results demonstrate that acceler-

ometers can provide an accurate integrated measure of energy expenditure in

wild animals using many different locomotory modes.
1. Introduction
Energy costs relative to energy intake determine many aspects of animal ecology,

including behavioural decisions, timing of reproduction and, ultimately, mortality.

Nonetheless, animal ecologists have developed only a handful of methods for

measuring energy costs in the wild. The doubly labelled water method provides

only a single, time-averaged value [1]. Heart-rate methods provide values at fine

temporal scales, but often involve surgery and can be influenced by cardiovascular

adjustments that do not affect energy expenditure [2,3].

The miniaturization of electronic loggers has allowed for the development of

tiny accelerometers, which can be attached without surgery [4–6]. Because the

dynamic component of body acceleration should be a robust index of mechanical

power output for a known body mass, accelerometers can, in theory, provide an

index of nearly instantaneous energy expenditure [7]. Accelerometers have the

potential to measure variation in the costs of fine-scale behaviours (preening, fight-

ing and sprints) that are not captured by simple time budget models [7]. However,

mechanical power in homeotherms is usually only 15–25% of energy costs, and

oxygen consumption rates can be only loosely related to mechanical power because

of variability in muscle efficiency and other factors [8,9]. In particular, muscle effi-

ciency may vary across locomotory modes; the relative difference in average body

acceleration between flying and swimming in cormorants was less than the relative

difference in estimated metabolism during flying and swimming [10]. Therefore, the
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relationship between metabolic rate and accelerometry in one

locomotory mode is not necessarily valid in another mode, and

predictions of the cost of flying or diving based on validations

of animals running on treadmills may not be accurate [3].

It is, therefore, important to validate the principle that

acceleration can be used to generate measures of energy expen-

diture on free-living animals. In particular, it is important to

validate that the calibration(s) of acceleration to determine

energy expenditure hold(s) across different locomotory

modes, temperatures and other vagaries present in the wild

environment. Such validations have been accomplished on

humans [11–13] and many different animals in captivity

[3,7,9,14], including pinnipeds freely diving at isolated ice

holes or trained to surface into respirometry chambers [5,15].

We attached accelerometers for 24 h to wild thick-billed

murres (Uria lomvia) regularly swimming in 228C to 88C
water and flying and moving on land in 88C to 188C air.

We simultaneously measured daily energy expenditure

using doubly labelled water. We predicted that dynamic

body acceleration strongly correlates with energy expendi-

ture, but depends on locomotory mode.
2. Material and methods
We captured 20 breeding (four incubating, 16 chick rearing)

thick-billed murres at the Coats Island colony, Nunavut,

Canada, in 2009. Over 24 h, we simultaneously measured daily

energy expenditure using doubly labelled water, acceleration at

16 Hz using an accelerometer (M190-D2GT, Little Leonardo,

Tokyo, Japan), and time spent flying, swimming and moving

on land (see the electronic supplementary material for isotope

measurements, conversion equations, past validations for

doubly labelled water, details on logger attachment and determi-

nation of time budgets). We converted the measured acceleration

data to partial dynamic body acceleration (PDBA), a putative

measure of energy expenditure that removes the static com-

ponent of acceleration associated with posture via smoothing

(see the electronic supplementary material).

All isotopic measurements were conducted by a technician in

the University of Aberdeen laboratory, who was blind to the

accelerometry results. All PDBA results were obtained from a

computer script originally developed for a separate bird species

and run by a co-author (A.K.) who was blind to the doubly

labelled water measurements.

We used R 2.10.1 to estimate calibration coefficients that mini-

mized the log-likelihood of a particular general linear model

describing daily energy expenditure (dependent variable) from

dynamic acceleration (independent variable), and used Akaike’s

information criterion (AIC) to compare among models, as AIC pena-

lizes models that are needlessly complex. We compared models with

separate calibration coefficients for each locomotory mode with

models that had a single calibration coefficient that applied across

all locomotory modes. We considered the null model to be a

model using time budget alone (model 1, such as time spent

flying) and compared that model with the model with dynamic

acceleration (model 2, such as acceleration during flight). In either

case, the AIC would select the more parsimonious, simplified

model for describing daily energy expenditure as a function of

time budgets or accelerometry.
3. Results
Average PDBA for an individual was positively correlated

with daily energy expenditure (R2 ¼ 0.73, t19 ¼ 6.77,
p , 0.0001; figure 1a,b). Accelerometry (the product of the aver-

age value of PDBA for each individual for each locomotory

mode and time during that mode) was consistently better

than time budgets alone in predicting field metabolic rate

(table 1). The most parsimonious models considered modes at

the water surface and on land to have similar calibration coeffi-

cients, with models further separating out flight and diving to

be almost equally parsimonious (table 1). Adding average

temperature or mass across the accelerometer deployment as

a parameter did not improve the AIC values (table 1).
4. Discussion
Dynamic body acceleration closely predicted field metabolic

rate, measured independently via doubly labelled water, in

wild birds using three different locomotory modes (flying,

swimming and movement on land) in an environment that

included diving into sub-zero water. Thus, despite the con-

founding effects of environmental noise such as wave

action, potential movement in the third axis of motion, ther-

moregulation, digestion and variability in muscle efficiency

among media, biaxial accelerometry provided a reliable

index of overall energy expenditure. Given that there is

uncertainty (approx. 10%) at the individual level associated

with the doubly labelled water technique [1], which would

tend to reduce the strength of correlation, accelerometry

may be an even better index of energy expenditure than

our measurements suggest. Our R2 value is above those

obtained in captive experiments comparing metabolic rate

with overall dynamic body acceleration using respirometery

in diving homeotherms (R2 ¼ 0.47 in diving Steller’s sea

lions, Eumetopias jubatus [14]; R2 ¼ 0.53 in diving double-

crested cormorants, Phalacrocorax auritus (but no relation

between average values) [9]), but lower than those measure-

ments obtained for running homeotherms (R2 ¼ 0.81 to

0.94 across 11 birds/mammals on a treadmill, [7,16]). Our

correlations are over the natural range of average daily

PDBA values and include a single value per individual,

whereas the treadmill studies could sustain a wider range

of average PDBA values over the shorter timescale of those

measurements and include multiple values per individual,

increasing the R2 values. One reason we found a relatively

high relationship may be that auks have relatively high

locomotory costs [17,18], and, therefore, variation among

individuals in other metabolic components (digestion,

thermoregulation, cellular processes) is relatively small.

Our results support the conclusions made by Gómez-

Laich et al. [10], who found that overall dynamic body

acceleration was similar between flying and fast walking on

a treadmill for cormorants, even though the theoretical

model estimated flight costs to be double that of fast walking.

The most parsimonious model in our study suggested that

the formula relating PDBA to energy expenditure was differ-

ent for flying and all other locomotory modes, although there

was almost identical support for a model that had separate

calibration coefficients between PDBA and energy expendi-

ture for flying, diving and resting (table 1). Thus, although

PDBA was higher during flying than resting, it was not

nearly as high as it should have been were there a linear

relationship between PDBA in flying with PDBA in resting

(figure 1a). The implication that mechanical energy efficiency

(the calibration coefficient between PDBA and energy
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Figure 1. (a) Partial dynamic body acceleration (PDBA) reliably predicts daily energy expenditure (DEE) in thick-billed murres moving freely across different
locomotory modes (walking, swimming and flying; average values for each mode shown). (b) Same data with uncertainty in doubly labelled water measurements
calculated using a jack-knife approach. Calculations were made using the mean at each point and systematically omitting individual data points. Multiplying the
standard deviation of the resulting confidence interval by 1.96 created the estimated uncertainty. (c) Models including PDBA (best fit (open circle), lowest AIC model
from table 1; complete (filled circle), all four variables parametrized) outperformed time budget models ( filled triangle) at predicting daily energy expenditure.
Ordinary least-squares regressions overlap and are shown for all three models.

Table 1. Comparisons among models for explaining energy expenditure in wild thick-billed murres during four locomotory modes: flying, diving, surface
swimming and movement on land. We considered all potential time budget and partial dynamic body acceleration (PDBA) models. We present all models with
DAIC , 2, as well as three null models: two different time budget models and the model only including average PDBA across all locomotory modes. Time
budget models had no intercept whereas PDBA models had an intercept and therefore included one additonal parameter.

model DAIC AIC weight

PDBAflying þ PDBAall other modes
a 0.00 0.40

PDBAflying þ PDBAdiving þ PDBAland and surface 0.01 0.40

PDBAflying þ PDBAsurface þ PDBAdiving þ PDBAland 1.65 0.06

PDBAflying þ PDBAall other modes þ temperature 1.86 0.05

PDBAflying þ PDBAall other modes þ mass 1.94 0.04

timeflying þ timeall other modes 4.39 0.00

timeflying þ timesurface þ timediving þ timeland 6.14 0.00

PDBAall modes 9.98 0.00
aEquation for most parsimonious model was: daily energy expenditure ¼ (0.147 + 0.024) PDBAflying þ (0.062 + 0.019)
PDBAall other modes þ (990 + 183).
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expenditure) is similar across most locomotory modes, except

flight, supports the idea that minimum transport costs

depend on taxonomic group rather than the medium [19],

whereas the clearly different mechanical energy efficiency

in air compared with water and land supports the idea that

minimum transport costs depend primarily on the physical

constraints of a particular medium [20].

Accelerometry was not only a good predictor of energy

expenditure, it was better than time spent away from the

colony, time spent flying, time spent diving or a multiple

regression of time spent flying and diving (table 1). Presumably,

accelerometry accounted for some of the variation in energy

costs within each locomotory mode associated with preening,

social interactions, wind speed and dive strategies. For instance,

murres actively pursue prey throughout dives directed towards

schooling prey and are relatively inactive during the bottom

phase of dives directed towards benthic prey [20,21].

Given the strong commercial pressure provided by the

presence of accelerometers in smart phones, it is likely that

the cost and size of accelerometers will continue to diminish
[6]. We are, therefore, entering an era where ecologists can

accurately assign energy costs to discrete behaviours during

almost instantaneous periods in wild animals.
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10. Gómez-Laich A, Wilson RP, Gleiss AC, Shepard ELC,
Quintana F. 2011 Use of overall dynamic body
acceleration for estimating energy expenditure in
cormorants: does locomotion in different media
affect relationships? J. Exp. Mar. Biol. Ecol. 399,
151 – 155. (doi:10.1016/j.jembe.2011.01.008)

11. Plasqui G, Westerterp KR. 2007 Physical activity
assessment with accelerometers: an evaluation
against doubly labeled water. Obesity 15,
2371 – 2379. (doi:10.1038/oby.2007.281)

12. Halsey LG, Shepard ELC, Hulston CJ, Venables MC, White
CR, Jeukendrup AE, Wilson RP. 2008 Acceleration versus
heart rate for estimating energy expenditure and speed
during locomotion in animals: tests with an easy model
species, Homo sapiens. Zoology 111, 231 – 241. (doi:10.
1016/j.zool.2007.07.011)

13. Leenders NY, Sherman WM, Nagaraja HN. 2006
Energy expenditure estimated by accelerometry and
doubly labeled water: do they agree? Med. Sci.
Sports Exerc. 38, 2165 – 2172. (doi:10.1249/01.mss.
0000235883.94357.95)

14. Enstipp MR, Ciccione S, Gineste B, Milbergue M,
Ballorain K, Ropert-Coudert Y, Kato A, Plot V,
Georges J-Y. 2011 Energy expenditure of freely
swimming adult green turtles (Chelonia mydas) and
its link with body acceleration. J. Exp. Biol. 214,
4010 – 4020. (doi:10.1242/jeb.062943)

15. Fahlman A, Wilson R, Svärd C, Rosen DAS, Trites
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