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Animal behaviour exhibits fractal structure in space and time. Fractal properties in animal space-use have
been explored extensively under the Lévy flight foraging hypothesis, but studies of behaviour change itself
through time are rarer, have typically used shorter sequences generated in the laboratory, and generally lack
critical assessment of their results. We thus performed an in-depth analysis of fractal time in binary dive
sequences collected via bio-logging from free-ranging little penguins (Eudyptula minor) across full-day
foraging trips (216 data points; 4 orders of temporal magnitude). Results from 4 fractal methods show that
dive sequences are long-range dependent and persistent across ca. 2 orders of magnitude. This fractal
structure correlated with trip length and time spent underwater, but individual traits had little effect. Fractal
time is a fundamental characteristic of penguin foraging behaviour, and its investigation is thus a promising
avenue for research on interactions between animals and their environments.

F
ractal structure characterizes a diverse array of natural systems, from coastlines, DNA sequences, and
cardio-pulmonary organs, to temporal fluctuations in temperature, heart rate, and respiration1–11. Spatial
and temporal patterns of animal behaviour have also been described as fractal, exhibiting self-similarity or

self-affinity across a range of measurement scales. For example, fractal movements (a.k.a. Lévy walks) are super-
diffusive and thus theoretically adaptive in heterogeneous and unpredictable environments where they can
enhance the probability of resource encounters over Brownian (random) movements (Lévy Flight Foraging
Hypothesis)12–15. In the temporal domain, various physiological impairments or other challenges can lead to
complexity loss in behavioural sequences, i.e. increased periodicity or stereotypy16–21. The latter is congruent with
studies of altered physiology in stress and disease in humans, which have underpinned the hypothesis that fractal
structure is adaptive because it is more tolerant to variability extrinsic to the biological or physiological system
producing it4,6,11,22,23. Fractal analysis can thus help us understand the structure and function of animal behaviour.

However, while exploring fractal properties in spatiotemporal data is currently a hot topic in the movement
ecology literature, less attention has been paid to strictly temporal fluctuations in behaviour, despite that the first
studies of fractal time appeared nearly two decades ago19,24–26 and that temporal complexity has been linked to
individual quality or health (see above). There are two main obstacles to assessing fractal time in behaviour
sequences. First, generating sufficiently long time series to perform meaningful analyses is no easy task because
accurately recording behaviours continuously is difficult, particularly under natural conditions; all but 3 studies of
fractal time were experimental16,17,27. There is debate about whether fractal analyses apply to shorter sequences
because scaling is theoretically asymptotic28–31, and while the methods used may be sensitive to long-range
dependence they may not always be specific, i.e. one can always find a higher order short-range correlated model
to describe apparently fractal patterns32,33. Furthermore, irrespective of sequence length, single values produced
by fractal analysis to characterize observed sequences by their long-range correlative properties (i.e. scaling
exponents) may not represent the entire range of measurement scales examined; scaling exponents may be
scale-dependent rather than scale-independent as theoretically predicted34,35. While scale-dependency can
undoubtedly provide useful information about animal responses to salient features at various scales36–39, multiple
scaling regions means that single exponents cannot accurately characterize their behaviour. Alternatively, log-log
plots of fluctuation as a function of scale, upon which calculation of scaling exponents is typically based, may
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appear linear even in the absence of scaling35,40,41. Unfortunately, few
– if any – studies of fractal time in animal behaviour have critically
addressed these issues sensu34,35, leaving questions about the robust-
ness of their results.

In this study, we address these issues by applying fractal analysis to
binary sequences of foraging behaviour (i.e. diving and the gaps
between successive dives) collected via bio-logging from a marine
predator. Bio-logging can be described as the use of animal-attached
devices to investigate ‘‘phenomena in or around free-ranging organ-
isms that are beyond the boundary of our visibility or experience’’42.
This approach is indispensable for monitoring behaviours of animals
that cannot be systematically observed because accurate records of
various behavioural parameters can be attained at fine time scales
over long periods43,44. In addition to increasing the robustness of
fractal results, such lengthy sequences allow us to better assess the
fit of the regression line in the double logarithmic plot and thereby
test for its accuracy and the potential for multiple scaling regions. In
one of the first investigations of fractal time, the authors note that
identifying fractal scaling in the behaviour of their study subjects
(Drosophila melanogaster) was only possible following the develop-
ment of technology capable of accurately recording behaviour at
previously unavailable resolutions (i.e. 0.1 s in this case)25. Bio-
logging technology offers similar advantages for the study of fractal
properties in temporal sequences of wild animal behaviour, and we
expect this merger of techniques to yield valuable information about
general qualitative properties in sequences of animal behaviour in
situ.

We were able to use behaviour sequences of little penguins
(Eudyptula minor) spanning complete foraging trips, ca. 50,000 data
points at 1 second sampling intervals (215 , 216 points across ca. 15
hours); among the longest continuous binary sequences of animal
behaviour that have been used in studies of fractal time. Such wave-
form behaviour sequences can mitigate some issues concerning
sequence length because data can be recorded at very fine resolutions
(e.g. ,1 s)18,25,45. Previous studies using this approach have examined
behavioural sequences with 211 or 212 total data points16,17,27,46,47, but
total observation periods have typically remained in the range of ca.
30–60 minutes, i.e. 2048–4096 data points, with few exceptions27.
Short sequences such as these can be problematic under natural
conditions because animal activity patterns tend to occur in rhythms
with strong temporal variation in behavioural performance.
Context-specific (e.g. within bout) analyses of complexity can pro-
vide useful information16, but they do not allow us to assess correla-
tional properties at larger time scales incorporating multiple bouts
and modes of behaviour.

We employed 4 fractal analytical methods to avoid potentially
misleading results that can occur when relying on any single
method48,49, including Detrended Fluctuation Analysis (DFA; both
linear- and bridge-detrended versions), the Hurst Absolute Value
method, and the Box-counting method to determine whether tem-
poral sequences of penguin behaviour are consistent with patterns
expected if they were generated by a long-memory process charac-
terized by scaling. We examine whether a single scaling exponent can
characterize entire foraging sequences, whether scaling is restricted
to a certain range of scales within these sequences, or whether mul-
tiple scaling regions must be considered. We then use the scaling
exponents generated to test whether general differences exist in rela-
tion to individual traits (age, sex, chick age, and body mass) and
whether the various methods produce consistent results across indi-
viduals. Finally, we compare these results with those generated by
more traditional, frequency-based approaches commonly used to
quantify marine animal foraging behaviour.

Results
Frequency-based dive parameters. During the study period, little
penguin foraging trips lasted for a mean 6 s.d. of 14.8 6 0.9 hours

(range: 12.1–16.9). Within each foraging trip, penguins spent 35.4 6

10.6% of the time underwater (range: 21.3–55.4). Individual dives
within the sequence lasted for a mean 6 s.d. of 29.8 6 6.3 seconds
(mean range: 20.0–39.9), with mean dive depths of 12.3 6 3.0 meters
below the surface (mean range: 4.9–16.8). Correlations between these
dive parameters are shown in Fig. 1a.

Scaling exponents. All fractal measures point to the existence of
temporal scaling in observed sequences of penguin foraging
behaviour. The mean 6 s.d. scaling exponents were: aDFA 5 0.88
6 0.06; aDFAb 5 1.89 6 0.05; HAV 5 0.80 6 0.06; Db 5 1.10 6 0.07.
Examination of aDFA shows that the original binary sequences
(example shown in Fig. 2a) were characteristic of fractional
Gaussian noise (fGn: aDFA g (0,1)), which was confirmed by the
fact that the integrated sequences (examples shown in Fig. 2b)
measured via DFAb produced aDFAb g (1,2), characteristic of
fractional Brownian motion (fBm). Furthermore, our estimates of
the Hurst exponent H using aDFA and aDFAb are in agreement with
the expected theoretical relationships (afGn < afBm21), and the
Pearson correlation coefficient of 0.93 for values of aDFA and aDFAb

further confirms their compatibility (Fig. 1b). Agreement between
other measures was fair, ranging between absolute values of j0.66j
and j0.89j for all other combinations. Negative correlations involving
Db were predicted by the inverse relationship expected between
Hurst and fractal dimension estimates. Finally, that 0.5 , H , 1
for all estimates of H clearly suggests that little penguin foraging
sequences are characterized by persistent long-range dependence
(positive autocorrelation); i.e. behavioural patterns tend to persist
across long time frames and scale accordingly, although they did
not persist across all scales examined (see below). Note that all
scaling exponents presented above were calculated using the best
scaling region which is derived in the next section.

Validation of scaling regions. A closer examination of the log-log
plot of F(n) versus n in DFA shows that scaling does not persist across
all scales examined (Fig. 3). The R2 – SSR procedure demonstrates
that the best scaling region lies between 27 , 212, ca. 128 , 4096 s or
2.1 , 68.3 min (Fig. 3A, B). However, the compensated slope
procedure places values at the 2 largest scales within the range of
variation expected given some element of noise (Fig. 3C), and thus
scaling may persist to 214, 16384 s or 273.1 min, spanning more than
2 orders of magnitude; i.e. a similar correlation structure is found at
all of these measurement scales. To be conservative, we calculated
scaling exponents using only the range of scales included in the best
scaling region by both methods, i.e. 27 , 212. If on the other hand we
relied only on R2 values as many previous studies have done, we
might have included all scales in this region given that all values
were greater than 0.997 in DFA across sequences using all scales
examined (Fig. 3), and given the similar mean values of aDFA using
the best and full range of scales (0.877 and 0.865, respectively).

Increasing the sampling resolution from 1 s to a maximum of 30 s
did not significantly alter resultant aDFA values, despite that total
sequence lengths decreased from a mean of 54000 data points to ca.
10800, 5400, 2700, and 1800 for 5, 10, 20 and 30 s intervals, respect-
ively. Values of aDFA were 0.88 6 0.06, 0.88 6 0.06, 0.87 6 0.07 and
0.84 6 0.08 when using the best scaling regions from each set of
sequences, respectively. Pearson correlation coefficients for compar-
isons between these and values from the 1 s interval sequences were
0.88, 0.86, 0.84 and 0.87. There was also considerable overlap in their
best scaling regions. However, while scaling was found to begin at ca.
2 min when using the higher-resolution 1 s sequences, the lower-
bound limits of the scaling region were higher in all of these lower-
resolution sequences (range: ca. 4–5 min). Conversely, the R2 – SSR
procedure included slightly larger upper-bound limits for the 5, 10
and 20 s interval sequences, extending to ca. 85 min in each case
(respectively 1024, 512 and 256 data points) as opposed to the ca.
68 min scaling limit (4096 data points) for 1 s intervals. Perhaps
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because of the considerably shorter sequence lengths, scaling regions
in the 30 s interval sequences capped at ca. 64 min (128 data points),
as did the 1 s interval sequences. Like the original results, the
compensated-slope procedure applied to these sequences also
included all of the largest scales in the best scaling region, pushing
the potential upper-bound limit of the scaling region to over 340 min
from the 273 min estimated above.

Variation in scaling exponents and frequency-based dive para-
meters. Individual differences between study subjects could not
explain any significant portions of the variation in either scaling
exponents (Table 1) or summary statistics (Table 2) from observed
foraging trips, with one exception: initial body mass was positively
associated with scaling exponents generated by DFAb. Because aDFAb

is inversely related to fractal dimension, this result suggests that birds
with greater body mass at the beginning of the foraging trip
performed less temporally complex dive sequences than did
initially lighter birds. However, none of the three other fractal
measures produced similarly significant relationships between
these variables, although the effect size was indeed largest for body
mass in all cases. Therefore, while the relationship between body
mass and complexity must remain equivocal until further data can
be examined, we observed fair agreement across measures in the
effects of these four variables on complexity.

We observed a number of associations between frequency-based
dive parameters and scaling exponents (Table 3). First, total time
spent underwater had a significant positive effect on exponents mea-
sured by DFA and DFAb, and the inverse effect on the box-counting
dimension; i.e. complexity increased with dive time in all three cases.
Given that time spent underwater ranged from ca. 21–55% across
foraging trips, these results mimic those from the simulated
sequences in which aDFA increased as the probability function
diverged from 50–50. However, since randomized surrogate
sequences analysed by DFAb and box-counting all produced H 5

0.5, the effect of total time spent underwater on these scaling expo-
nents cannot be explained completely by such altered distributional
characteristics. Second, trip durations were positively associated with
both DFAb and HAV; i.e. complexity decreased with sequence length

using these indices. Finally, we found a negative association between
mean dive duration and aDFAb, but no relationship between this
summary statistic and other fractal measures. Similarly, mean dive
depth, which was highly correlated with mean dive duration (0.9 in
all model correlation matrices), was unrelated to observed scaling
exponents. Note that despite the strong positive correlations between
these two variables, we found no evidence for excessive variance
inflation (,10 in all cases) and have therefore left all terms in the
statistical models. The weight of evidence therefore suggests that dive
sequence complexity may well be associated with total time spent
underwater and foraging trip duration, but is generally independent
of both mean dive duration and depth.

Discussion
We demonstrated that binary sequences of little penguin foraging
behaviour resemble patterns expected if they were produced by a
long memory process characterized by temporal scaling; binary
sequences were consistent with fractional Gaussian noise (fGn: 0
, H , 1) while integrated sequences were consistent with fractional
Brownian motion (fBm: 1 , H , 2). Scaling exponents of all analyses
fit their expected theoretical relationships, fell in the range 0.79 , H
, 0.9, and therefore suggest strong persistence in dive sequences. In
other words, any given region within a dive sequence is dependent
upon patterns that occurred much earlier in the sequence, more so
than would be expected of stochastic or even short-range dependent
sequences. The persistence of the autocorrelation means that long
diving events tend to be followed by long diving events, and vice
versa. Upon closer examination of the local slopes produced by the
log-log plot of fluctuation as a function of scale using DFA, the data
indicate that the best-scaling region ranged from windows of 27

(2 min) , 212 (68 min) or 214 (273 min), which in the latter case
would constitute temporal scaling across more than 2 orders of mag-
nitude, a rarity among behavioural studies. Within this range of
scales, therefore, there is no single scale at which dive sequences
can be fundamentally measured or distinguished.

In this way, our results correspond well with the many recent
studies that have demonstrated fractal patterns in the Lévy-like
movement paths of various marine animals. This indicates a search

Figure 1 | Correlations between diving parameters for both (a) frequency-based and (b) fractal measures. Lower-left panels show correlation

scatterplots while upper-right panels give Pearson’s correlation coefficients along with their respective confidence intervals. Measurement types are

shown diagonally between these panel blocks.
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strategy which approximates theoretically optimal behaviour, allow-
ing an organism to maximize its encounter rates with resources
under heterogeneous conditions13–15,50,51. Thus we return full circle
to the original studies of fractal time in animal behaviour which first
demonstrated the link between resource distribution and temporal
complexity25,26. Further investigation in the temporal domain is now
warranted on at least two key accounts. First, studies such as ours,
while admittedly ignoring the spatial location of an organism, focus
on behavioural performance itself, in this case the sequential distri-
bution of diving inclusive of changes in behavioural state, which may
better address actual prey search and pursuit than does simple spatial
data. In fact, fractal patterns in the distribution of any relevant beha-
viour through time can be investigated using this approach, and to
date, studies have investigated not only foraging and movement
but also vigilance, posture, and even reproductive and social beha-
viours16–18,20,27,52. The fact that animals do engage in multiple

behaviours may make simple interpretation of sequential patterns
in any given behaviour problematic. In this respect, seabird foraging
behaviour provides a particularly useful model system for studies of
fractal time, with switches between periods that crudely consist of
prey search/pursuit and surface recovery53,54; two clearly contrasting
and mutually exclusive behaviours sensu55 and characteristic of beha-
vioural intermittence56. Still, for marine birds and pinnipeds, tem-
poral patterns of behaviour must arise not only as the outcome of
prey encounters and distributions, but also of physiological limita-
tions related to respiration57. Scaling exponents therefore represent
behavioural complexity in a global rather than specific sense, result-
ing from multiple interacting variables, which would be expected of
any complex adaptive system.

Second, there is a growing body of evidence suggesting that vari-
ous stressors can lead to loss of complexity in behaviour sequences,
i.e. the progression of behaviour through time becomes more

Figure 2 | Example of (a) a single little penguin female’s binary foraging sequence denoted 1 for diving and 21 for lags between successive dives and (b)
integrated (cumulatively summed) dive sequences from 5 different little penguin females showing variation in foraging patterns and resultant changes
in aDFA values. The bold solid line indicates the integrated dive sequence corresponding to the binary sequence shown above.
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periodic or stereotypical. This also suggests that scaling exponents
can be used to characterize some aspect of individual or envir-
onmental quality. A number of studies have tested this hypothesis,
showing that impairments or challenges ranging from parasitic
infection through toxic substance exposure to increased exposure
to anthropogenic disturbance16–21,27,58 are all associated with such
complexity loss16–19,21,58. This may have major implications concern-
ing the viability of individuals operating in a sub-optimal state. It will
be interesting to determine whether similar examples of complexity
loss can be demonstrated using spatial data collected from challenged
individuals. Although the animal movement ecology literature on
statistical patterns of search is growing with reference to optimality

and response to environmental cues, little attention has been paid to
intrinsic factors that might cause variation in scaling across indivi-
duals under the same ecological conditions55. Indeed, there seems to
be a divide in the current literature in which spatial patterns (animal
locations through time) and temporal patterns (behavioural changes
through time) are generally discussed in relation to extrinsic (e.g.
landscape variables) and intrinsic (e.g. health states) control mechan-
isms, respectively. Integration of these two domains and the frame-
work through which their results are interpreted should therefore be
a goal of future research, to further our understanding of how ani-
mals respond to scales in both time and space, and to investigate
whether complexity loss is a feature of both.

Figure 3 | Validation of scaling regions in sequences of diving behaviour from little penguins. (A) The R2 – SSR procedure determines the

values of log(scale) that maximize the coefficient of determination and minimize the sum of squared residuals (*), corresponding to the range of scales

across which the data reflect strong scaling behaviour (filled circles shown in (B)). Note that when all scales are used (1) the coefficient of determination

remains comparable to that of the best scaling region, indeed all regression fits produced R2 values greater than 0.997, but the sum of squared residuals

increases dramatically. In this case, the estimates of aDFA for the best scaling region and the full range of scales are also comparable at 0.877 and 0.865,

respectively. (C) The compensated slope procedure allows testing the effect that varying the scaling exponent has on dispersion around a ‘‘zero-slope’’

(solid line), the point at which the scaling exponent is a true representation of the sequence. The scaling exponent derived from the best scaling region

produces values that best approximate a zero-slope (D), with all points examined falling within the 95% confidence intervals (dotted lines) generated by

1000 simulations of random variation around a zero-slope. Therefore, these observed sequences do exhibit fractal structure with power-law scaling

behaviour, i.e. strong linearity in the log-log plot of fluctuation as a function of scale, at least across the scales outlined in (B).

Table 1 | Results of linear mixed-effects models examining influence of individual traits on variation in scaling exponents from little penguin
foraging sequences

Model Predictor est. s.e.m. df t Pr(. | t | )

DFA (Intercept) 0.652 0.168 13 3.884 0.002
Age 20.001 0.002 10 20.604 0.560
Sex (male) 20.046 0.027 10 21.677 0.125
BM 0.0002 0.0001 10 1.750 0.111
Chick Age 20.003 0.003 10 20.829 0.426

DFAb (Intercept) 1.611 0.145 13 11.124 0.000
Age 0.000 0.002 10 20.188 0.855
Sex (male) 20.040 0.023 10 21.730 0.114
BM 0.0003 0.0001 10 2.238 0.049
Chick Age 20.001 0.003 10 20.442 0.668

HAV (Intercept) 0.530 0.171 13 3.100 0.008
Age 0.0001 0.002 10 0.026 0.979
Sex (male) 20.037 0.028 10 21.302 0.222
BM 0.0002 0.0001 10 1.588 0.143
Chick Age 20.002 0.003 10 20.516 0.617

Box Count (Intercept) 1.354 0.163 13 8.320 0.000
Age 20.001 0.002 10 20.374 0.716
Sex (male) 0.030 0.027 10 1.120 0.289
BM 20.0002 0.0001 10 21.615 0.137
Chick Age 0.002 0.003 10 0.743 0.475

BM refers to initial body mass at time of logger deployment.
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A key result of our study, however, is that scaling did not persist
across all scales examined, a common limitation of using this
approach to characterize complete sequences. Indeed, this has been
a major criticism of using fractal analysis in studies of animal beha-
viour in the past59,60, although this criticism has been rebutted per-
suasively34, largely because previous studies had not critically
assessed the data upon which their scaling exponents were based.
In the present study, the lack of clear scaling at smaller scales likely
reflects a combination of: (1) the influence of the mean individual
dive durations, which were larger than most of these smaller scales at
29.4 6 20.6 s; (2) decay of the strong short term autocorrelation; and,
(3) mathematical error when small numbers of data points are used
in regression analyses. At the largest scales, it is impossible to deter-
mine whether the bias in scaling is due to its absence or simply the
paucity of available windows, i.e. an artefact of finite sequence length.
This can only be answered by collecting sequences of greater length,

which should continue to be a goal in future studies. What is prom-
ising, however, is that changing the resolution of the data did not lead
to significant changes in the fractal properties of observed sequences,
although our results do suggest that higher- and lower-resolution
sequences may be better at detecting the presence of scaling at small
and large scales, respectively.

In addition to these measurement-related issues, there may be
biological reasons to expect changes in the correlation structure of
foraging sequences at certain scales. This may in part reflect certain
habitat characteristics and how animals interact with their environ-
ments at different scales. For example, the tortuosity of foraging
paths in wandering albatross (Diomedea exulans) differs across three
scaling regions: patterns at the smallest scales (,100 m) reflect
adjustment to wind currents, at medium scales (1–10 km) food-
search behaviour, and at the largest scales (.10 km) long-
distance movement between patches and change in local weather

Table 2 | Results of linear mixed-effects models examining influence of individual traits on variation in frequency-based dive parameters
from little penguin foraging sequences

Model Predictor est. s.e.m. df t Pr(. | t | )

Dive (Intercept) 52915.520 7613.679 13 6.950 0.000
Trip Age 46.980 91.300 10 0.515 0.618
Duration Sex (male) 2980.990 1264.637 10 20.776 0.456

BM 1.400 6.408 10 0.219 0.831
Chick Age 299.560 138.918 10 20.717 0.490

Dive (Intercept) 36.188 18.474 13 1.959 0.072
Duration Age 0.195 0.227 10 0.861 0.409

Sex (male) 0.793 2.962 10 0.268 0.794
BM 20.009 0.015 10 20.592 0.567
Chick Age 0.249 0.334 10 0.746 0.473

Dive (Intercept) 16.067 9.085 13 1.768 0.100
Depth Age 0.022 0.111 10 0.202 0.844

Sex (male) 0.618 1.459 10 0.424 0.681
BM 20.005 0.008 10 20.651 0.530
Chick Age 0.184 0.164 10 1.124 0.287

Underwater (Intercept) 0.482 0.228 13 2.111 0.055
Time Age 20.001 0.003 10 20.348 0.735

Sex (male) 0.054 0.038 10 1.413 0.188
BM 20.0002 0.0002 10 20.783 0.452
Chick Age 0.005 0.004 10 1.244 0.242

BM refers to initial body mass at time of logger deployment.

Table 3 | Results of linear mixed-effects models examining relationship between scaling exponents and frequency-based dive parameters
from little penguin foraging sequences

Model Predictor est. s.e.m. df t Pr(. | t | )

DFA (Intercept) 0.796 0.156 13 5.093 0.000
Trip Duration 5.2E-06 2.8E-06 10 1.865 0.092
Underwater Time 20.396 0.111 10 23.568 0.005
Dive Duration 0.003 0.003 10 0.830 0.426
Dive Depth 20.010 0.007 10 21.482 0.169

DFAb (Intercept) 1.810 0.104 13 17.480 0.000
Trip Duration 5.0E-06 1.8E-06 10 2.716 0.022
Underwater Time 20.357 0.073 10 24.921 0.001
Dive Duration 0.003 0.002 10 1.250 0.240
Dive Depth 20.011 0.005 10 22.331 0.042

HAV (Intercept) 0.299 0.200 13 1.491 0.160
Trip Duration 1.1E-05 3.6E-06 10 2.994 0.014
Underwater Time 0.016 0.145 10 0.109 0.915
Dive Duration 0.002 0.004 10 0.486 0.638
Dive Depth 20.014 0.009 10 21.597 0.141

Box Count (Intercept) 1.099 0.125 13 8.787 0.000
Trip Duration 3.9E-06 2.3E-06 10 21.736 0.113
Underwater Time 0.471 0.095 10 4.974 0.001
Dive Duration 3.0E-04 2.4E-03 10 0.126 0.902
Dive Depth 0.004 0.005 10 0.821 0.431
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conditions61. For central place foragers like the penguins studied
here, travel between foraging sites and the colony, which can consti-
tute a considerable portion of the total sequence length (trip dura-
tion), may lead to scaling breaks at large scales. However, this cannot
explain the deviation from scaling we observed at large scales because
our sequences began only when the first instances of diving were
observed, eliminating any effects of such movement types.
Landscape heterogeneity can also affect scaling in animal move-
ments, such as in American martens (Martes americana) where
movement paths are determined by microhabitat features at small
(,3.5 meters) but not larger scales38, and in grazing ewes where such
features affected movements at scales greater than a threshold value
(5 meters)39. While addressing variation in microhabitat structure is
beyond the scope of the current study, prey locations are likely to
have contributed strongly to deviations from scaling at small scales.
This would be compounded in seabirds by the necessary pauses in
foraging as animals return to the surface to breathe57. Strong short-
term autocorrelation can result from bouts in which animals dive to
similar depths in pursuit of prey within a patch and then surface to
replenish oxygen reserves before repeating the process62.

In addition to the distinction between real and perceived scaling
breaks, another difficulty in inferring fractal structure is that it is
generally always possible to find a short-range correlated model of
higher order and complexity to fit any sequence with finite length33;
i.e. all real world data. For example, DFA failed to distinguish
between a real long-range dependent process and a short-range
one generated by the super-position of three first-order autoregres-
sive processes32. In real-world data, simple autoregressive models
have been used to predict the correlation structure of sequential dive
depths in macaroni penguins (Eudyptes chrysolophus) with some
precision63. However, other recent evidence also using successive
measurements of dive depths strongly suggests that such sequences
are rather consistent with long memory processes in most cases15,50,51.
Indeed, short-range correlations cannot adequately model many bio-
logical and physical phenomena found in nature, which is why more
parsimonious models of long-range dependence were developed33.
Our study is among the first to examine binary time series of animal
behaviour with lengths up to 216, sequences spanning 4 orders of
magnitude and thus nearing and in some cases even exceeding those
used in many simulation studies. Therefore, our results offer com-
pelling support for long-range fractal structure in penguin dive
sequences.

Ultimately, while describing the scaling exponents of behavioural
sequences accurately is a fundamental component of this research,
what may be of more interest to many researchers is the next step; the
ability to apply such quantifiable properties in distinguishing
between the behaviours of various groups of individuals or taxa. In
this regard, our study did not show any clear differences in the
complexity signatures of individuals in relation to age, sex, or chick
age, and produced only weak evidence for an effect of initial body
mass. Similarly, these variables also did not affect any of the summary
statistics measured. There is considerable variation across studies in
the impacts of such biological factors on seabird behaviour64–67, so it
remains difficult to make any strong inferences based on as small a
data set as that used here. However, it is clear that certain aspects of
foraging behaviour such as time spent underwater and trip duration
can be correlated with dive sequence complexity. Our simulated data
show that DFA can be sensitive to variation in the probability dis-
tribution of dives, but further analysis of the scaling region easily
distinguished between simulated and observed behaviour (see
Supplementary Information). Furthermore, reshuffling the dives
produced random sequences in 3 of our 4 fractal methods, all of
which correlated well with DFA, particularly DFAb. Together, these
results suggest that time spent underwater and trip duration cannot
on their own explain the variation in fractal scaling observed. It is also
notable that neither mean dive duration nor depth was related to a

sequence’s fractal properties. Therefore, the sequential distribution
of dives within a sequence is ultimately the key factor, adding weight
to our assertion that temporal fractal analyses provide a metric that
describes a fundamental property in animal behaviour: fractal time26.

In conclusion, we show here that penguin dive sequences exhibit a
complex fractal structure through time, and relate this structure to a
combination of extrinsic (environmental) and intrinsic (self) organ-
izational control elements. The application of fractal tools to tem-
poral sequences of animal behaviour should be explored further,
particularly in, though far from limited to, organisms that are often
used as indicator species for climate and environmental change, like
the penguins examined here and many other top predators in marine
ecosystems. The merger of bio-logging and fractal analysis represents
an important opportunity to do so, promising to advance our under-
standing of the many interactions that occur between animals and
the environments in which they are found.

Methods
Study site & subjects. This study was conducted during the guard stage of the 2010
breeding period (October 26 – November 26) with free-living little penguins
(Eudyptula minor) at the Penguin Parade, Phillip Island (38u319S, 145u099E),
Victoria, Australia. Birds from this colony were marked with injected passive RFID
transponders (Allflex, Australia) as chicks68. We collected diving data consisting of
single full-day foraging trips from 28 penguins, 14 males and 14 females, guarding 1-
to 2-week-old chicks. Each penguin’s age was determined from the date of
transponder injection. Sex was determined using bill depth measurements69. We
captured the birds in artificial wooden burrows and fitted them with time-depth data
loggers (ORI400-D3GT, Little Leonardo, 12 3 45 mm, 9 g) set to record depth to a
resolution of 0.1 m with an accuracy of 1 m (range: 0–400 m) at one-second
intervals. Devices were attached using waterproof TesaH tape (Beiersdorf AG,
Hamburg, Germany) along the median line of the lower back feathers to minimize
drag70 and facilitate rapid deployment and easy removal upon recapture71. After a
single foraging trip, each bird was recaptured in its nest box and the logger and tape
were removed. All birds were weighed before and after logger attachment. Fieldwork
was approved by the Phillip Island Animal Experimentation Ethics Committee
(2.2010) and the Department of Sustainability and Environment of Victoria,
Australia (number 10006148).

Frequency-based dive parameters. We first characterized dive sequences during
each foraging trip with commonly-used summary statistics, including: (1) trip length;
(2) mean dive duration; (3) mean dive depth; and, (4) total dive time, i.e. total time
spent below the surface during a trip. After recovery, data were downloaded from the
loggers and analysed using custom-written programs in IGOR Pro, version 6.22A
(Wavemetrics, Portland, Oregon). We consider diving to have occurred only when
the depth at a given sampling interval was greater than 1 m. We include Pearson
correlation tests to examine relationships between these parameters.

Fractal analyses. We applied 4 methods to estimate the scaling behaviour of observed
dive sequences. We emphasize Detrended Fluctuation Analysis or DFA2 because it
has become a mainstream method for examining scaling behaviour in time series data
and remains the only method used to examine binary sequences of animal behaviour,
though it is not without its critics72. For comparison, we used two variants of DFA (see
below), but also two other measures in the Hurst Absolute Value (HAV) method73,74

and the box-counting method75. We performed DFA and HAV using the package
‘fractal’76, and box-counting with the package ‘fractaldim’77, in R statistical software
v.2.15.078.

Signal class. A critical first step in examining fractal structure in any data set for
which the signal class is not a priori known is to determine whether the sequences
reflect fractional Gaussian noise (fGn) or fractional Brownian motion (fBm).
Choosing an appropriate scaling exponent estimator and correctly interpreting the
results require knowledge about the class of the original signal30,31,41. We therefore
tested the signal class of these sequences to determine whether they reflect fGn or fBm
by examining the scaling exponent calculated by DFA (aDFA), with aDFA g (0,1)
indicating fGn and aDFA g (1,2) indicating fBm.

Detrended fluctuation analysis (DFA). DFA is a robust method used to estimate the
Hurst exponent79,80, i.e. the degree to which time series are long-range dependent and
self-affine30,73. The method is described in9, and its application to binary sequences of
animal behaviour can be found in16,18,27. Other names for this method include linear
detrended scaled windowed variance30 and residuals of regression73. The following
description of DFA is taken from the above studies.

First, we coded dive sequences as binary time series [z(i)] in wave form containing
diving (denoted by 1) and lags between diving events (denoted by 21) at 1 s intervals
to length N. Diving behaviour was recorded at all t during which the subject was
submerged to a depth greater than 1 m. Series were then integrated (cumulatively
summed) such that
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where y(t) is the integrated time series.
After integration, sequences were divided into non-overlapping boxes of length n, a

least-squares regression line was fit to the data in each box to remove local linear
trends (ŷn(t)), and this process was repeated over all box sizes such that

F nð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
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where F(n) is the average fluctuation of the modified root-mean-square equation
across all scales (22, 23, … 2n). The relationship between F and n is of the form

F nð Þ*na

where a is the slope of the line on a double logarithmic plot of average fluctuation as a
function of scale. Like all estimators of the Hurst exponent, aDFA 5 0.5 indicates a
non-correlated, random sequence (white noise), aDFA ,0.5 indicates negative auto-
correlation (anti-persistent long-range dependence), and aDFA .0.5 indicates pos-
itive autocorrelation (persistent long-range dependence)9. Theoretically, aDFA is
inversely related to the fractal dimension, a classical index of structural complexity81,
and thus smaller values reflect greater complexity (see Theoretical Relationships
between Scaling Exponents below).

In addition to the standard (linear) form of DFA, we also used a bridge detrending
method in our analysis, which is reportedly more appropriate to fBm signals49 and
sequences of lengths greater than 21230. Bridge-detrended Fluctuation Analysis
(hereafter DFAb) differs in two distinct ways from the linear form. Bridge-detrended
Fluctuation Analysis (hereafter DFAb) differs in two distinct ways from the linear
form. First, rather than using the regression line that best fits all data points in each
window to detrend the sequence, the slope of the line bridging only the first and last
points in each window is calculated30. Second, since it was suggested to work well with
fBm rather than fGn sequences49, and assuming that original binary sequences in this
study were of the class fGn, we first integrated our time series before applying DFAb,
meaning that observed sequences were integrated twice during application of DFAb
but only once during DFA. We refer to the scaling exponent generated by this analysis
as aDFAb.

Hurst absolute value method (HAV). We calculated the Hurst exponent H directly
using the Absolute Value method. While fractal dimension estimates theoretically
provide information about both memory and self-similarity or self-affinity, a
previous study has shown that DFA, while giving robust estimates of long-range
dependence (serial correlation), fails to capture the self-similarity parameter in data
with certain non-Gaussian distributional characteristics74. The same study showed
that the absolute value method, on the other hand, captured both parameters. Using
this method, time series of length N are divided into smaller windows of length m and
the first absolute moment is calculated as

d mð Þ~
1

N=m

XN=m

k~1

X mð Þ kð Þ{ Xh i
�� ��

where X(m) is a window of length m and ÆXæ is the mean of the entire series. The
variance d scales with the window size m as

d mð Þ~mHAV{1

where HAV is the scaling (absolute value) exponent. Note that while DFA first
integrates the time series before calculation, HAV is calculated from the original time
series, which in this case is the binary sequence of dives and their lags.

Box-counting dimension. We also employ a classical measure of fractal dimension to
measure sequence complexity; box-counting75,82. The principle behind box-counting
is simple. First, the integrated curve of the time series is placed within a single box,
which is subsequently divided into smaller and smaller equally-sized boxes of size n.
We use the entire range of scales from total sequence length down to the resolution of
the data (i.e. 1 s). At each value of n, the number of boxes required to cover the curve is
counted, with the expected relationship

N nð Þ~kn{Db

where n is the box size, N(n) represents the number of boxes required to cover the
curve at each box size, k is a constant, and Db is the box-counting dimension, which is
estimated from the slope of the least squares regression line on the log-log plot of N(n)
as a function of n.

Validation of scaling region. We use various methods to ensure the validity of our
DFA results. There are algorithmic reasons why values diverge from scaling at small
and large scales in a given analysis, and some of these are specific to the method used.
For example, omitting some of the smallest and largest scales from the analysis is
recommended when using DFA and DFAb; excluding the largest scales can reduce
variance but increase bias, whereas excluding the smallest scales reduces bias but

increases variance30. The range of scales used should therefore be selected to maximize
the fit of the regression line, i.e. minimize the mean squared error, on the double
logarithmic plot30. Similarly, excluding scales smaller than 1/5 of the total sequence
length as well as the two largest scales is recommend when using box-counting75.
Alternatively, multiple scaling regions may also exist for biological reasons as a
response of an organism to temporal or spatial scale34,36–38. Therefore, we
independently determined the appropriate range(s) of scales within which strong
scaling behaviour existed in our observed sequences using two procedures described
in detail in35.

The R2 – SSR procedure involves the creation of a series of regression windows in
which the number of data points (scales) ranges from a minimum of 5 (for valid
regression analysis) to the maximum number of scales examined, 14 in our case. Each
window was then slid across the entire data set so that the smallest windows provided
8 regression estimates, the next window size 7, and so on until only a single regression
was performed on the largest window covering all scales. For fractal sequences, there
should be a point at which, on a plot of the coefficient of variation (R2) versus the sum
of squared residuals (SSR), points converge to maximize the former and minimize the
latter. This allows for the identification of the best scaling regions to be used in the
calculation of scaling exponents in observed sequences. We performed this analysis
on the mean values of F(n) and n across all observed sequences, and therefore do not
test for variation in scaling regions across individual birds.

The compensated-slope procedure uses a scaling factor c to ‘compensate’ the
scaling behaviour such that, in the case of DFA,

F nð Þ~nc � n{Df

where F(n) is the fluctuation about the box size n as described above, c is the com-
pensation exponent taking values of c g (0, 1) for self-affine curves such as those
examined here, and Df is the fractal dimension estimate for the sequence. By varying c
between 0 and 1, we can find the value at which our dimension estimate (based on the
range of scales determined via the R2 – SSR procedure) and compensated slope
converge to 0 to produce a straight line (if scaling exists) with slope zero on the plot of
Log(nc*n2Df) versus Log(n). Here, we used 5 values for c, the lowest (0.70) and highest
(1.00) of which for illustrative purposes and the middle three values representing the
minimum, best, and maximum estimates of aDFA derived from the sliding windows
used in the R2 – SSR procedure. We then bootstrapped 1000 simulations to determine
whether variation from this zero slope in observed sequences could be explained by
noise, i.e. data points fall within the 95% confidence intervals, or whether scaling was
simply unlikely given the fractal dimension estimate produced.

While the procedures described above are robust, many previous studies have
relied on less convincing measures to support their results, such as high coefficients of
variation for the slope of the double logarithmic plot and showing that surrogate
sequences in which observed data points have been shuffled to break any serial
correlation results in the expected relationship aDFArandom 5 0.516,27,46. We also pre-
sent R2 values in our study, and take the mean of 10 surrogate sequences for each
observed sequence (i.e. N 5 28*10 5 280), but additionally apply the R2 – SSR and
compensated-slope procedures to these randomized sequences for comparison with
observed sequences. Furthermore, we computed aDFA for simulated random binary
sequences of various lengths (211 , 216 s) and distributions of diving behaviour (100
simulations for each of 5 binary probability distributions, i.e. diving versus its lag, at
0.25, 0.33, 0.50, 0.66, and 0.75) for comparison with observed and surrogate data. The
results of these analyses are presented as Supplementary Information online.

Finally, in addition to the original 1 s interval sequences, we also applied the linear
form of DFA to sequences sampled at 5, 10, 20 and 30 s intervals to determine
whether the same scaling relationship would hold given different data resolutions. We
also applied the R2 – SSR and compensated-slope procedures to these sequences to
determine whether their scaling regions corresponded to those in the high-resolution
1 s interval sequences.

Theoretical relationships between scaling exponents. Most scaling exponents and
other fractal dimension estimates are theoretically related. For example, aDFA

provides a robust estimate of the Hurst exponent H30,73, such that
for fGn: H 5 aDFA

for fBm: H 5 aDFA 2 1
In addition, H itself is inversely related to fractal dimension, here the box-counting

dimension, such that for one-dimensional time series like those examined here

Df ~2{H

While these measures are theoretically related, in practice the various methods
often lead to different results, either because of mathematical differences or non-
linearity in the series themselves73,83,84. Therefore, we estimated each of these para-
meters separately using the methods described above for a more robust interpretation
of the results. We include an analysis of Pearson correlation coefficients to test for
agreement between the four measures used.

Statistical analyses. Using the scaling exponents estimated via the above methods as
Gaussian-distributed response variables (X2 goodness-of-fit tests, P.0.05), we
constructed general linear mixed-effects (LME) models to determine whether age,
sex, initial body mass and the age of the young chicks being guarded were associated
with variation in penguin dive sequence complexity (N 5 28). We could not use final
body mass to calculate mass gain during trips because measurements were taken
hours after birds had returned to the nest and had already fed their chicks. We used
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the same approach to test whether these individual factors could explain variance
observed in the summary statistics for each foraging trip, which were also Gaussian-
distributed across individuals (X2 goodness-of-fit tests, P.0.05). For all models, we
set the date on which data were collected for each individual as a random factor in our
analyses to control for temporal variation. All LME models were run using the nlme
package85 in R. Models were fit by restricted maximum likelihood, using all factors
and covariates in a single full model to estimate the parameter effects. Finally, we used
a general linear model (GLM) to test whether the summary statistics themselves could
explain variation in the observed scaling exponents. In all models, we tested for
variance inflation caused by correlation between fixed effects using the car package in
R86. If the variance inflation factor exceeded 10, we arbitrarily removed one of the 2
correlated variables and ran the model again. We set the alpha level for all statistical
analyses at 0.05.
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